LLM Validation Tutorial: Ensure Data Quality with Instructor¶
Master the fundamentals of validating LLM outputs in this comprehensive tutorial. Learn how to use Instructor's validation system to ensure GPT-4, Claude, and other language models produce reliable, business-compliant structured data.
Why LLM Output Validation is Critical¶
When extracting structured data from LLMs, validation ensures:
- Data Integrity: LLM outputs contain all required fields with correct formats
- Business Compliance: Extracted data adheres to your domain rules and constraints
- Production Reliability: LLM responses meet quality standards before entering your system
┌─────────────┐ ┌──────────────┐ ┌─────────────┐
│ LLM │ -> │ Instructor │ -> │ Validated │
│ Generates │ │ Validates │ │ Structured │
│ Response │ │ Structure │ │ Data │
└─────────────┘ └──────────────┘ └─────────────┘
│
│ If validation fails
▼
┌─────────────┐
│ Retry with │
│ Feedback │
└─────────────┘
Basic LLM Validation Example¶
See how Instructor validates LLM outputs automatically:
from pydantic import BaseModel, Field
import instructor
from openai import OpenAI
# Define validation rules for LLM extraction
class UserProfile(BaseModel):
name: str
age: int = Field(ge=13, description="User's age in years")
# Extract and validate LLM output
client = instructor.from_openai(OpenAI())
response = client.chat.completions.create(
model="gpt-3.5-turbo", # Works with GPT-4, Claude, Gemini
messages=[
{"role": "user", "content": "My name is Jane Smith and I'm 25 years old."}
],
response_model=UserProfile # Automatic validation
)
print(f"User: {response.name}, Age: {response.age}")
Key validation features in this LLM tutorial: - Constraint Validation: Age must be ≥ 13 years - Automatic Retry: If LLM output fails validation, Instructor retries with error context - Type Safety: Ensures LLM returns proper data types
Essential LLM Validation Patterns¶
Common validation rules for LLM outputs:
Validation | Example | What It Does |
---|---|---|
Type checking | age: int | Ensures value is an integer |
Required fields | name: str | Field must be present |
Optional fields | middle_name: Optional[str] = None | Field can be missing |
Minimum value | age: int = Field(ge=18) | Value must be ≥ 18 |
Maximum value | rating: float = Field(le=5.0) | Value must be ≤ 5.0 |
String length | username: str = Field(min_length=3) | String must be at least 3 chars |
How LLM Output Validation Works¶
The LLM validation pipeline in Instructor:
- LLM Generation: Language model produces structured output
- Schema Matching: Instructor maps LLM response to your Pydantic model
- Validation Check: Pydantic validates against defined constraints
- Smart Retry: On failure, errors are sent back to the LLM with context
- Success or Timeout: Process continues until valid output or retry limit
Enhance LLM Validation with Custom Messages¶
Guide LLMs with specific error messages for better corrections:
from pydantic import BaseModel, Field
class Product(BaseModel):
name: str
price: float = Field(
gt=0,
description="Product price in USD",
json_schema_extra={"error_msg": "Price must be greater than zero"}
)
Common LLM Validation Use Cases¶
- Age Verification: Ensure extracted ages meet minimum requirements
- Price Validation: Verify LLM-extracted prices are positive numbers
- Email Format: Validate email addresses from unstructured text
- Date Constraints: Ensure dates are within valid ranges
- Business Rules: Enforce domain-specific constraints on LLM outputs
Continue Your LLM Validation Journey¶
- Custom Validators - Build complex validation logic for LLM outputs
- Retry Mechanisms - Configure how Instructor handles validation failures
- Field-Level Validation - Validate individual fields in LLM responses
Master validation to ensure your LLM applications produce reliable, production-ready data!