Skip to content

LLM Validation Tutorial: Ensure Data Quality with Instructor

Master the fundamentals of validating LLM outputs in this comprehensive tutorial. Learn how to use Instructor's validation system to ensure GPT-4, Claude, and other language models produce reliable, business-compliant structured data.

Why LLM Output Validation is Critical

When extracting structured data from LLMs, validation ensures:

  1. Data Integrity: LLM outputs contain all required fields with correct formats
  2. Business Compliance: Extracted data adheres to your domain rules and constraints
  3. Production Reliability: LLM responses meet quality standards before entering your system
┌─────────────┐    ┌──────────────┐    ┌─────────────┐
│ LLM         │ -> │ Instructor   │ -> │ Validated   │
│ Generates   │    │ Validates    │    │ Structured  │
│ Response    │    │ Structure    │    │ Data        │
└─────────────┘    └──────────────┘    └─────────────┘
                          │ If validation fails
                   ┌─────────────┐
                   │ Retry with  │
                   │ Feedback    │
                   └─────────────┘

Basic LLM Validation Example

See how Instructor validates LLM outputs automatically:

from pydantic import BaseModel, Field
import instructor
from openai import OpenAI

# Define validation rules for LLM extraction
class UserProfile(BaseModel):
    name: str
    age: int = Field(ge=13, description="User's age in years")

# Extract and validate LLM output
client = instructor.from_openai(OpenAI())
response = client.chat.completions.create(
    model="gpt-3.5-turbo",  # Works with GPT-4, Claude, Gemini
    messages=[
        {"role": "user", "content": "My name is Jane Smith and I'm 25 years old."}
    ],
    response_model=UserProfile  # Automatic validation
)

print(f"User: {response.name}, Age: {response.age}")

Key validation features in this LLM tutorial: - Constraint Validation: Age must be ≥ 13 years - Automatic Retry: If LLM output fails validation, Instructor retries with error context - Type Safety: Ensures LLM returns proper data types

Essential LLM Validation Patterns

Common validation rules for LLM outputs:

Validation Example What It Does
Type checking age: int Ensures value is an integer
Required fields name: str Field must be present
Optional fields middle_name: Optional[str] = None Field can be missing
Minimum value age: int = Field(ge=18) Value must be ≥ 18
Maximum value rating: float = Field(le=5.0) Value must be ≤ 5.0
String length username: str = Field(min_length=3) String must be at least 3 chars

How LLM Output Validation Works

The LLM validation pipeline in Instructor:

  1. LLM Generation: Language model produces structured output
  2. Schema Matching: Instructor maps LLM response to your Pydantic model
  3. Validation Check: Pydantic validates against defined constraints
  4. Smart Retry: On failure, errors are sent back to the LLM with context
  5. Success or Timeout: Process continues until valid output or retry limit

Enhance LLM Validation with Custom Messages

Guide LLMs with specific error messages for better corrections:

from pydantic import BaseModel, Field

class Product(BaseModel):
    name: str
    price: float = Field(
        gt=0,
        description="Product price in USD",
        json_schema_extra={"error_msg": "Price must be greater than zero"}
    )

Common LLM Validation Use Cases

  • Age Verification: Ensure extracted ages meet minimum requirements
  • Price Validation: Verify LLM-extracted prices are positive numbers
  • Email Format: Validate email addresses from unstructured text
  • Date Constraints: Ensure dates are within valid ranges
  • Business Rules: Enforce domain-specific constraints on LLM outputs

Continue Your LLM Validation Journey

Master validation to ensure your LLM applications produce reliable, production-ready data!