SambaNova Integration¶
Instructor supports SambaNova's LLM API, allowing you to use structured outputs with their models.
Installation¶
Basic Usage¶
import instructor
import os
from pydantic import BaseModel
client = instructor.from_provider("sambanova/Meta-Llama-3.1-405B-Instruct")
class User(BaseModel):
name: str
age: int
user = client.chat.completions.create(
messages=[
{"role": "user", "content": "Ivan is 28"},
],
response_model=User,
)
print(user)
# > User(name='Ivan', age=28)
Async Usage¶
import instructor
import os
from pydantic import BaseModel
client = instructor.from_provider(
"sambanova/Meta-Llama-3.1-405B-Instruct",
async_client=True,
)
class User(BaseModel):
name: str
age: int
async def get_user():
user = await client.chat.completions.create(
messages=[
{"role": "user", "content": "Ivan is 28"},
],
response_model=User,
)
return user
# Run with asyncio
import asyncio
user = asyncio.run(get_user())
print(user)
# > User(name='Ivan', age=28)
Available Models¶
Check the SambaNova documentation for the latest model offerings and capabilities.