Validation in Instructor¶
This guide covers validation concepts and best practices when using Instructor for structured outputs.
Overview¶
Validation in Instructor ensures that the output from language models matches your expected schema. This is crucial for: - Data consistency - Error handling - Type safety - Business logic enforcement
Basic Validation¶
Instructor uses Pydantic for validation, which provides: 1. Type checking 2. Data coercion 3. Custom validators 4. Field constraints
from pydantic import BaseModel, Field, validator
from typing import List
class User(BaseModel):
name: str = Field(..., min_length=2)
age: int = Field(..., ge=0, le=150)
emails: List[str]
@validator('emails')
def validate_emails(cls, v):
if not all('@' in email for email in v):
raise ValueError('Invalid email format')
return v
Validation Strategies¶
1. Field Validation¶
Use Field() for basic constraints:
class Product(BaseModel):
name: str = Field(..., min_length=1, max_length=100)
price: float = Field(..., gt=0)
quantity: int = Field(..., ge=0)
2. Custom Validators¶
Use @validator for complex validation:
class Order(BaseModel):
items: List[str]
total: float
@validator('total')
def validate_total(cls, v, values):
if v < 0:
raise ValueError('Total cannot be negative')
return v
3. Pre-validation Hooks¶
Use pre-validation hooks for data transformation:
class UserProfile(BaseModel):
username: str
@validator('username', pre=True)
def lowercase_username(cls, v):
return v.lower()
Error Handling¶
Instructor provides robust error handling for validation failures:
from instructor import patch
import openai
client = patch(openai.OpenAI())
try:
user = client.chat.completions.create(
model="gpt-3.5-turbo",
response_model=User,
messages=[{"role": "user", "content": "Extract: John Doe, age: -5"}]
)
except ValueError as e:
print(f"Validation error: {e}")
Best Practices¶
- Start Simple: Begin with basic type validation before adding complex rules
- Use Type Hints: Always specify types for better code clarity
- Document Constraints: Add clear descriptions to Field() definitions
- Handle Errors: Implement proper error handling for validation failures
- Test Edge Cases: Verify validation works with unexpected inputs
Common Patterns¶
Optional Fields¶
Nested Validation¶
class Address(BaseModel):
street: str
city: str
country: str
class User(BaseModel):
name: str
addresses: List[Address]
Complex Validation¶
class Transaction(BaseModel):
amount: float
currency: str
timestamp: datetime
@validator('currency')
def validate_currency(cls, v):
valid_currencies = ['USD', 'EUR', 'GBP']
if v not in valid_currencies:
raise ValueError(f'Currency must be one of {valid_currencies}')
return v
Related Resources¶
Updates and Compatibility¶
- Works with all supported LLM providers
- Compatible with latest Pydantic versions
- Regular updates for new validation features