Handling Missing Data¶
The Maybe
pattern is a concept in functional programming used for error handling. Instead of raising exceptions or returning None
, you can use a Maybe
type to encapsulate both the result and potential errors.
This pattern is particularly useful when making LLM calls, as providing language models with an escape hatch can effectively reduce hallucinations.
Defining the Model¶
Using Pydantic, we'll first define the UserDetail
and MaybeUser
classes.
from pydantic import BaseModel, Field
from typing import Optional
class UserDetail(BaseModel):
age: int
name: str
role: Optional[str] = Field(default=None)
class MaybeUser(BaseModel):
result: Optional[UserDetail] = Field(default=None)
error: bool = Field(default=False)
message: Optional[str] = Field(default=None)
def __bool__(self):
return self.result is not None
Notice that MaybeUser
has a result
field that is an optional UserDetail
instance where the extracted data will be stored. The error
field is a boolean that indicates whether an error occurred, and the message
field is an optional string that contains the error message.
Defining the function¶
Once we have the model defined, we can create a function that uses the Maybe
pattern to extract the data.
import instructor
import openai
from pydantic import BaseModel, Field
from typing import Optional
# This enables the `response_model` keyword
client = instructor.from_openai(openai.OpenAI())
class UserDetail(BaseModel):
age: int
name: str
role: Optional[str] = Field(default=None)
class MaybeUser(BaseModel):
result: Optional[UserDetail] = Field(default=None)
error: bool = Field(default=False)
message: Optional[str] = Field(default=None)
def __bool__(self):
return self.result is not None
def extract(content: str) -> MaybeUser:
return client.chat.completions.create(
model="gpt-3.5-turbo",
response_model=MaybeUser,
messages=[
{"role": "user", "content": f"Extract `{content}`"},
],
)
user1 = extract("Jason is a 25-year-old scientist")
print(user1.model_dump_json(indent=2))
"""
{
"result": {
"age": 25,
"name": "Jason",
"role": "scientist"
},
"error": false,
"message": null
}
"""
user2 = extract("Unknown user")
print(user2.model_dump_json(indent=2))
"""
{
"result": null,
"error": true,
"message": "User details could not be extracted"
}
"""
As you can see, when the data is extracted successfully, the result
field contains the UserDetail
instance. When an error occurs, the error
field is set to True
, and the message
field contains the error message.
If you want to learn more about pattern matching, check out Pydantic's docs on Structural Pattern Matching